On the complexity of H-colouring planar graphs
نویسندگان
چکیده
We show that if H is an odd-cycle, or any non-bipartite graph of girth 5 and maximun degree at most 3, then planar H-COL is NP -complete
منابع مشابه
Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs
We consider a natural restriction of the List Colouring problem: k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We a...
متن کامل3-List Colouring Permutation Graphs
3-list colouring is an NP-complete decision problem. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving 3-list colouring on permutation graphs.
متن کاملOn List Colouring and List Homomorphism of Permutation and Interval Graphs
List colouring is an NP-complete decision problem even if the total number of colours is three. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving list colouring of permutation graphs with a bounded total number of colours. More generally we give a polynomial-time algorithm that solves the listhomomorphism problem to any fixed target graph for a large cl...
متن کاملLower bounds for the game colouring number of partial k-trees and planar graphs
This paper discusses the game colouring number of partial k-trees and planar graphs. Let colg(PT k) and colg(P) denote the maximum game colouring number of partial k trees and the maximum game colouring number of planar graphs, respectively. In this paper, we prove that colg(PT k) = 3k + 2 and colg(P) ≥ 11. We also prove that the game colouring number colg(G) of a graph is a monotone parameter,...
متن کاملOn colouring (2P2, H)-free and (P5, H)-free graphs
The Colouring problem asks whether the vertices of a graph can be coloured with at most $k$ colours for a given integer $k$ in such a way that no two adjacent vertices receive the same colour. A graph is $(H_1,H_2)$-free if it has no induced subgraph isomorphic to $H_1$ or $H_2$. A connected graph $H_1$ is almost classified if Colouring on $(H_1,H_2)$-free graphs is known to be polynomial-time ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009